## Students

From the Tournament of the Towns:

In a school, more than 90% of the students study both English and French, and more than 90% of the students study English and German. Prove that more than 90% of the students who study both French and German also study English.

## Five People

Here is a problem that appeared in a Maths Battle in London a couple of weeks ago:

Donald, Jack, Peter, Richard and Steven have, in some order, the surnames Donaldson, Jackson, Peterson, Richardson and Stevenson. Donald is 1 year older than Donaldson, Jack is 2 years older than Jackson, Peter is 3 years older than Peterson, and Richard is 4 years older than Richardson. Who out of Steven and Stevenson is older, and by how much?

## Laundry

A stunner from the Baltic Way:

A family wears clothes of three colours: red, blue and green, with a separate identical laundry bin for each colour. At the beginning of the first week, all the bins are empty. Each week, the family generates 10kg of laundry (the proportion of each colour might vary week to week). The laundry is sorted by colour and placed in the bins. Next, the heaviest bin (only one if there are several) is emptied and its contents washed.

What is the minimum requirement (in kg) of each bin?

## Pairs and squares

This puzzle, which I posted to twitter (@puzzlecritic) a few weeks ago, is one of my variations on a problem that appeared in a mathematical discussion group on LinkedIn:

Find three different positive integers such that the sum of any two is a square.

## The Vault: Powers of two

My new book of maths puzzles is on its way! It’s packed full of interesting problems to sink your teeth into. I’ll post an update as the launch approaches.

In the meantime, here is a fantastic problem from the USA:

It is given that $2^{2004}$ is a 604-digit number beginning with a 1. How many of the numbers $2^0, 2^1, 2^2, 2^3, ..., 2^{2003}$ begin with a 4?

## Shares

From the 2004 Tournament of Towns:

Each day, the price of the shares of the corporation “Soap Bubble, Limited” either increases or decreases by n%, where n is an integer such that 0<n<100. The price is calculated with unlimited precision. Does there exist an n for which the price can take the same value twice?